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Numerical technique for studying stochastic resonance

M. V. Tretyakov*

Ural State University, Lenin Street 51, 620083 Ekaterinburg, Russia
~Received 14 August 1997!

A numerical technique is proposed to study the stochastic resonance~SR! phenomenon. The proposed
technique allows one to find characteristics of SR faster than by the usual approach. The signal-to-noise ratio
and phase shifts for a system of noisy coupled oscillators are simulated.@S1063-651X~98!00704-1#

PACS number~s!: 02.70.2c, 02.50.2r, 05.40.1j
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I. INTRODUCTION

The term ‘‘stochastic resonance’’~SR! is historically used
in connection with a variety of effects attributable to t
interaction between a periodic applied force and noise
nonlinear systems. As a survey on SR, one can use the
ceedings of workshops@1,2# or the review@3#.

In recent papers@4–7# the authors have investigated SR
large arrays~up to 512 elements! of noisy coupled oscilla-
tors. The phenomenon was named in@4# array enhanced sto
chastic resonance~AESR!. In addition to the common fea
tures of SR, AESR demonstrates a spatiotempo
synchronization and there is an additional design parame
the coupling strength, which essentially affects the beha
of SR characteristics. It was experimentally shown in@7# that
the signal-to-noise ratio of the output signal of a single dio
resonator can be significantly improved by coupling it diff
sively into an array of resonators. AESR was studied ana
cally in some limit cases~see, e.g.,@8,5#!, but the basic tool
for its investigation is numerical simulation of a system
stochastic differential equations~SDEs!.

To calculate the characteristics describing SR, one m
integrate the system on long time intervals and simulat
sufficiently large number of independent realizations. M
characteristics of SR~e.g., the signal-to-noise ratio! are ex-
pectations of functionals of the SDE solution. It is know
@9–11# that weak numerical methods are sufficient to cal
late such quantities and are quite simple for realization
efficient. Special powerful weak methods for SDEs w
relatively small noise are proposed in@12#. Applying these
methods, we propose a numerical technique here that al
us to study properties of SR faster than by the usual
proach. We demonstrate the technique on a simple mo
but it is also valid for more complicated systems.

In Sec. II the numerical technique for calculating t
signal-to-noise ratio and phase shifts is proposed. Sectio
contains numerical results for the array of noisy coupled
cillators. We confirm by the numerical experiment that t
signal-to-noise ratio~SNR! has extremal behavior with a
increase of both noise intensity and coupling and that
effect is improved with the growth of the array length. The
results are in full agreement with the previous papers
AESR @4,5#. We also show that there is a critical length
array such that a further increase of the array length does

*Electronic address: Michael.Tretyakov@usu.ru
571063-651X/98/57~4!/4789~6!/$15.00
in
ro-

al
er,
r

e

i-

f

st
a

n

-
d

ws
p-
el,

III
-

e
e
n

ot

lead to an improved SNR. The experiments on phase sh
display their extremal behavior with the growth of noise i
tensity and coupling.

II. DESCRIPTION OF THE NUMERICAL TECHNIQUE

Following @4,5#, we consider the system of stochastic d
ferential equations

dX~ i !5@aX~ i !2bX~ i !3
1A sin~Vt1w!1c~X~ i 11!22X~ i !

1X~ i 21!!#dt1«dWi~ t !,

i 51,2, . . . ,n,X~0![X~1!,X~n11![X~n!,X~0!5X0 ,tP@0,T#,
~1!

whereX5(X(1),X(2), . . . ,X(n)) is an n-dimensional vector
and Wi(t),i 51, . . . ,n, are independent standard Wien
processes. The system~1! describes a one-dimensional arra
~chain! of overdamped driven nonlinear oscillators coupl
linearly to their nearest neighbors. To ensure a bistable
tential ~two-state points!, the coefficientsa and b must be
positive. The phasew is taken as a uniformly distributed
random variable on the interval@0,2p# and the coupling pa-
rameterc>0.

Let us recall some definitions from the theory of rando
processes~see, e.g.,@13,14#!, which we use below. A random
processj(t), j(t)PRn, is a stationary one if it has two firs
momentsEj(t) andEuj(t)u2 and

Ej~ t !5Ej~ t1t!5const,

cov„j~ t !,j~s!…5cov„j~ t1t!,j~s1t!… for any t,s,t,
~2!

where cov„j(t),j(s)… is the covariation matrix

cov„j~ t !,j~s!…5Ej~ t !j~s!T2Ej~ t !Ej~s!T.

A random processj(t) is a periodic one with a periodT0 if

Ej~ t !5Ej~ t1T0!,

cov„j~ t !,j~s!…5cov„j~ t1T0!,j~s1T0!… for any t,s.
~3!

In accordance with Theorem 5.2 in@13#, Chap. 3, there is
a solutionX(t) of the system~1! at each fixedw, which is a
periodic Markov process with the period 2p/V. The peri-
4789 © 1998 The American Physical Society
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4790 57M. V. TRETYAKOV
odic process can be converted into a stationary one by
following shift of time @15,13#: If u is a random variable
distributed uniformly on@0,2p/V# and independent onX(t),
then the processh(t)5X(t1u) is stationary. Consequently
there is a stationary solutionX(t) of the system~1! in the
case of uniformly distributed on@0,2p#, independent onX(t)
random phasew ~see the physical background of such a d
tribution of the phasew, e.g., in@16,3#!. Due to Theorem 7.1
in @13#, Chap. 4, there is a unique stationary Markov proc
X(t) corresponding to the system~1!, and under any initial
distribution of X0 the solutions of Eq.~1! converge to this
stationary process in the weak sense ast→`.

Let us consider a constituent oscillator of the chain~e.g.,
the middle one! described by Eq.~1!. Below we shall denote
a constituent component~oscillator! X( l ),l P$1,2, . . . ,n%, of
the vectorX(t)[(X(1), . . . ,X(n)) by Xc(t) and its correla-
tion function byK(t). In our case the correlation functio
K(t) has the form~cf. @15#!

K~t!5K0~t!12(
k51

`

a2k21 cos~2k21!Vt, ~4!

whereK0(t) goes quickly to zero.
According to the definition, the spectral functionF(v)

can be written as

F~v!5
1

p E
0

`

K~t!
sin vt

t
dt, vP@0,̀ !. ~5!

Because of Eq.~4!, we get

F~v!5F0~v!1 (
k51

`

a2k21x@v2~2k21!V#,

where

F0~v!5
1

p E
0

`

K0~t!
sin vt

t
dt, x~x!5H 0, x,0

1/2, x50
1, x.0.

Consequently, the spectral densityS(v) is equal to

S~v!5S0~v!1 (
k51

`

a2k21d„v2~2k21!V… ~6!

and

S0~v!5
dF0~v!

dv
5

1

p E
0

`

K0~t!cosvtdt.

Thus, as it is generally known, the spectrumS(v) for a
system like Eq.~1! consists of a broadband noise backgrou
and d-function spikes at frequenciesv5(2k21)V, k
51,2, . . . .

A. Numerical method

Let us introduce an equidistant discretizationDN of the
time interval@0,T#: DN5$t i : i 50,1, . . . ,N; 05t0,t1,¯

,tN5T%; the time steph5t i 112t i . To simulate the system
~1!, which is a system with additive noises, we take the fu
he

-

s

d

Runge-Kutta weak method with the errorO(h41«4h2) from
@12#. In the case of the system~1! this method takes the form

Xk11
~ i ! 5Xk

~ i !1«h1/2jk
~ i !1~k1

~ i !12k2
~ i !12k3

~ i !1k4
~ i !!/6

1«h3/2ahk
~ i !2hb@~Xk

~ i !1«h1/2hk
~ i !!32~Xk

~ i !

2«h1/2hk
~ i !!3#/21«h3/2c~hk

~ i 11!22hk
~ i !1hk

~ i 21!!,

i 51, . . . ,n, k50,1, . . . ,N, ~7!

whereXk5(Xk
(1) ,Xk

(2) , . . . ,Xk
(n)) is the approximation of the

solutionX(tk) to system~1! and

k1
~ i !5h@aXk

~ i !2bXk
~ i !3

1Avk1c~Xk
~ i 11!22Xk

~ i !1Xk
~ i 21!!#,

k2
~ i !5h$a~Xk

~ i !1k1
~ i !/2!2b~Xk

~ i !1k1
~ i !/2!31A~vk1 l 1/2!

1c@~Xk
~ i 11!1k1

~ i 11!/2!22~Xk
~ i !1k1

~ i !/2!

1~Xk
~ i 21!1k1

~ i 21!/2!#%,

k3
~ i !5h$a~Xk

~ i !1«h1/2jk
~ i !1k2

~ i !/2!2b~Xk
~ i !1«h1/2jk

~ i !

1k2
~ i !/2!31A~vk1 l 2/2!1c@~Xk

~ i 11!1«h1/2jk
~ i 11!

1k2
~ i 11!/2!22~Xk

~ i !1«h1/2jk
~ i !1k2

~ i !/2!1~Xk
~ i 21!

1«h1/2jk
~ i 21!1k2

~ i 21!/2!#%,

k4
~ i !5h$a~Xk

~ i !1«h1/2jk
~ i !1k3

~ i !!2b~Xk
~ i !1«h1/2jk

~ i !1k3
~ i !!3

1A~vk1 l 3!1c@~Xk
~ i 11!1«h1/2jk

~ i 11!1k3
~ i 11!!

22~Xk
~ i !1«h1/2jk

~ i !1k3
~ i !!1~Xk

~ i 21!1«h1/2jk
~ i 21!

1k3
~ i 21!!#%,

kj
~0![kj

~1! , kj
~n11![kj

~n! , j 51, . . . ,4,

Xk
~0![Xk

~1! , Xk
~n11![Xk

~n! , X05X~0!. ~8!

To simulate sin(Vt1w) of Eq. ~1!, we introduce the system

du52Vvdt,

dv5Vudt,

u~0!5u05cosw, v~0!5v05sin w.

This system is approximated by

uk115uk1~m112m212m31m4!/6,

vk115vk1~ l 112l 212l 31 l 4!/6,

where

m152hVvk , l 15hVuk , m252hV~vk1 l 1/2!,

l 25hV~uk1m1/2!,

m352hV~vk1 l 2/2!, l 35hV~uk1m2/2!,

m452hV~vk1 l 3!, l 45hV~uk1m3!.
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57 4791NUMERICAL TECHNIQUE FOR STUDYING STOCHASTIC
We usevk and l j , j 51,2,3, in Eq.~8!.
The mutually independent random variablesjk

( i ) andhk
( i )

from Eqs.~7! and ~8! are simulated in accordance with th
laws

P~j50!52/3, P~j52) !5P~j5) !51/6,

P~h521/A12!5P~h51/A12!51/2.

The method~7! has the second order of weak convergen
with respect to the time steph. However, it usually gives
more accurate results~especially under low noise level! and
it is not essentially more complicated from the computatio
point of view than a standard weak method of order 2~see
details in@12#!. To carry out our experiments, we do not ta
a more accurate method, e.g., a standard method of ord
@9# or methods with errorsO(h41«6h2), O(h41«2h3),
O(h41«4h3), etc. of @12#, because the method~7! ensures
enough accuracy and speed of calculations for studying
characteristics in our case. Therefore, we have no reaso
take a more accurate and, naturally, more complica
method~e.g., there are no fully Runge-Kutta schemes amo
the more accurate methods mentioned!.

B. Evaluation of the signal-to-noise ratio

One of the main characteristics describing the SR p
nomenon is the SNR. The SNR is a commonly used mea
of the information content of the response of a system. T
remarkable property of the SR phenomenon is the nonmo
tonic behavior of SNR as a function of noise level. The fun
tion has a maximum and there is a noise level for which
system acts as a selective amplifier in some range of freq
cies.

Here we use the following definition of the output SNRR
for the constituent oscillator:

R5
a1

S0~V!
,

wherea1 andS0(v) are from Eq.~6!, i.e., R is the ratio of
the signal power and the noise background at the freque
of the applied periodic force. The distinctions in SNR de
nition existing in the literature do not lead to qualitative
different results.

Let us introduce a sufficiently small interval of freque
cies @V2DV,V1DV# ~‘‘signal bin’’ ! and approximateR
by R̃

R̃5
Q~V,DV!2DV@S0~V2DV!1S0~V1DV!#

@S0~V2DV!1S0~V1DV!#/2
,

~9!

where@see Eq.~5!#

Q~V,DV!5F~V1DV!2F~V2DV!

5
2

p E
0

`

K~t!cosVt
sin DVt

t
dt. ~10!

The termQ(V,DV) corresponds to the signal power and t
noise background in the signal bin of width 2DV and the
e

l
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-
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n-

cy
-

termDV@S0(V2DV)1S0(V1DV)# is related to the noise
background in the signal bin. As it is usually done,S0(v) is
assumed to be a sufficiently slowly variating function. O
experiments proved this fact. This approximation of the SN
coincides in general with ones used in other papers on S

To calculate the SNR, the stationary conditions~2! for the
solution to the system~1! must be fulfilled@as mentioned at
the beginning of this section, the system~1! has a unique
stationary solution#. Naturally, it is possible to ensure thi
requirement rigorously only for an infinite time. Howeve
the solution may already have good for our aims~i.e., an
error arising for this reason is not greater than the other
rors in the experiment! stationary properties at a certain tim
momentTs after the beginning of the SDE simulation. W
find an appropriate value ofTs in our experiments by simu
lation of the expectationEX(s) and the correlation function
EXc(s)Xc(s1t) under variouss.

Taking into account thatEX(s) is equal to zero in our
case, let us write formulas omittingEX(s). Due to the fact
that the system is simulated on a finite time interval@0,Ts
1T#, we approximateQ(V,DV) andS0(v) by QT(V,DV)
andS0T

(v) correspondingly. Consequently, we calculate t
value

R̃T5
QT~V,DV!2DV@S0T

~V2DV!1S0T
~V1DV!#

@S0T
~V2DV!1S0T

~V1DV!#/2
,

~11!

which approximatesR̃ and thereforeR. Note that we simu-
late the system~1! on the time interval@0,Ts# to ensure the
stationary properties~2! and on the time interval@Ts ,Ts

1T# to evaluateR̃T .
The functionQT(V,DV) from Eq. ~11! is equal to@see

Eq. ~10!#

QT~V,DV!5
2

p E
0

T

K~t!cosVt
sin DVt

t
dt

5
2

p
EFXc~Ts!E

Ts

Ts1T

Xc~ t !cosV~ t2Ts!

3
sin DV~ t2Ts!

t2Ts
dtG .

We calculate it as

QT~V,DV!5
2

p
EXc~Ts!Z~Ts1T!,

whereZ(t) obeys the subsidiary equation

dZ5Xc~ t !cosV~ t2Ts!
sin DV~ t2Ts!

t2Ts
dt, Z~Ts!50.

We simulate this equation together with the system~1! using
the same method~see Sec. II A!.

Let us considerS0T
(v) now. The spectral functionF(v)

can be rewritten as
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4792 57M. V. TRETYAKOV
F~v!5
1

p E
0

`

K~t!
sin vt

t
dt

5 lim
T→`

1

p E
0

T

K~t!S 1

t
2

1

TD sin vt dt

because (1/T) *0
TK(t)sinvt dt goes to zero asT goes to

infinity. Then, using the relation~cf. @14#, Sec. 2.1!

E
0

T

K~t!S 12
t

TD cosvt dt

5
1

2T
EU E

Ts

Ts1T

Xc~ t !eiv~ t2Ts!dtU2

,

we get

F~v!5 lim
T→`

1

2pT E
0

v

EU E
Ts

Ts1T

Xc~ t !ei ṽ~ t2Ts!dtU2

dṽ.

Consequently,

S̃~v!5 lim
T→`

1

2pT
EU E

Ts

Ts1T

Xc~ t !eiv~ t2Ts!dtU2

.

It is easy to prove~cf. @17#! that the functionS̃(v) is exactly
equal to S0(v) at the pointsvÞ(2k21)V, k51,2, . . . .
Then we can take the functionST(v),

ST~v!5
1

2pT
EU E

Ts

Ts1T

Xc~ t !eiv~ t2Ts!dtU2

,

instead ofS0T
(v) for evaluatingR̃T @see Eq.~11!# if DV is

sufficiently small and such thatST(v) has no sharp varia
tions outside the intervals@(2k21)V2DV,(2k21)V
1DV#, k51,2, . . . .

We calculateST(v) as

ST~v!5
1

2pT
E@Y1

v~Ts1T!21Y2
v~Ts1T!2#, ~12!

whereY1
v(t) andY2

v(t) obey the equations

dY1
v5Xc~ t ! cosv~ t2Ts! dt,

dY2
v5Xc~ t ! sin v~ t2Ts! dt,

Y1
v~Ts!5Y2

v~Ts!50. ~13!

We simulate Eq.~13! together with the system~1! by the
same method.

In addition to the common errors~the error of numerical
integration and the Monte Carlo error! arising in simulating
SDEs by a weak method, we also have some error due to
finiteness of the time interval@0,Ts1T# on which the system
is simulated. Indeed, the estimatorsQT(V,DV) and ST(v)
are biased ones forQ(V,DV) and S0(v) ~see, e.g.,@18#!
since the errorsrQT

(V,DV)5Q(V,DV)2QT(V,DV) and

rST
(v)5S0(v)2ST(v) are usually not equal to zero. How

ever, taking the value ofT to be large enough, we can ensu
he

a sufficient smallness of these errors. To prove the smalln
of these errors in comparison to other errors arising in

experiments, we check the variation ofR̃T with growing T.
We considerTs1T as a sufficiently long time if the variation

of R̃T with growing T is not greater than the other error
e.g., the Monte Carlo error. The finiteness of the time int
val also produces a loss of spectrum resolution@18#, accord-
ing to which we can calculateST(v) only at v52pk/T, k
50,1,2, . . . . Because of time discretization, the highest fr
quency~the Nyquist frequency! that is possible to pick out is
equal tovN5p/h @18#, whereh is a step of time discretiza
tion. The time steph in our experiments is such that freque
ciesvP@V2DV,V1DV# are much smaller thanvN . To
check that the taken time steph ensures the numerical inte
gration error to be not greater than the other errors in
experiments, we carry out the repeated calculations of so

points of R̃T with the time steph/2.
Remark 1.As mentioned above, we simulate values su

as E f„X(T1)…g„X(T2)… @e.g., EXc(s)Xc(s1t) or
QT(V,DV)] by the weak method. However, the existin
theorems~cf. @9–12#! on weak convergence of a numeric
method were proved for calculating an expectation such
E f„X(T)…. The proposition proved in@17# allows us to also
simulateE f„X(T1)…g„X(T2)… by weak methods.

Remark 2.One can see that our procedure of calculat
the SNR differs from the generally used one. The usual p
cedure contains the following steps~see, e.g.,@19,4,5#!: ~a!
simulation of SDE solutionsX(t) by a mean-square metho
~as a rule, the mean-square Euler method!; ~b! the random
trajectoriesX(t) obtained are considered as experimental s
tistical data, to which the fast Fourier transform is applied
calculate a random spectrum, and then, by averaging a n
ber of segments and samples of the random spectrum,ST(v)
is found;~c! the SNR is calculated on the basis ofST(v) @a1

is found as a square underST(v) in a signal bin#.
According to our procedure, we use a weak meth

which gives us an opportunity to calculate the needed va
with a large integration step~e.g., 0.1 in our experiments! in
comparison to the steps~0.005, 0.002, etc.! taken in previous
works@19,4,5#; we simulate both the investigated system a

the values needed for the approximationR̃T of the SNR by
the same numerical method. Because of its features, the
posed technique essentially saves CPU time, providing a
ficiently high accuracy.

C. Simulation of phase shifts

Another important characteristic of SR is a phase
~phase shift! between the applied periodic force and the
sponse. It was found for one-dimensional systems@20,21#
that the phase shift also has a nonmonotonic~extremal! be-
havior with increasing noise.

As mentioned at the beginning of this section, the solut
X(t) to the system~1! is a periodic one with the period
2p/V under any fixed initial phasew5w0 . By the definition
of the periodic process@see Eq.~3!#, we have

E@X~ t !uw5w0#5E@X~ t12p/V!uw5w0#.
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Then we can expand the conditional expectationE@X(t)uw
5w0# in the Fourier series

E@X~ t !uw5w0#5 (
k50

`

bk sin~kVt1w02ck!.

Analogously to@20,21#, we are interested in the value o
the phase shiftc1 . It can be found for the constituent osci
lator as

c152arctan@EZ1~Ts1T!/EZ2~Ts1T!#, ~14!

whereZ1(t) andZ2(t) obey the equations

dZ15Xc~ t !cos~Vt1w0!dt,

dZ25Xc~ t !sin~Vt1w0!dt, Z1~Ts!5Z2~Ts!50.
~15!

HereTs is a time moment, after which we suppose, as abo
that X(t) has already good stationary properties;T is equal

FIG. 1. Signal-to-noise ratioR versus noise level« for the
middle oscillators of the arrays~1! under the parametersa
52.1078, b51.4706, A51.3039, V50.7301, Ts56p/V, and T
540p/V. The Monte Carlo error is less than 0.26.

FIG. 2. Signal-to-noise ratioR versus noise level« and coupling
c for the middle oscillator of the array of three oscillators~1!. The
parameters are the same as in Fig. 1. The Monte Carlo error is
than 0.17.
e,

to 2pk/V, k51,2, . . . . Equations~15! are also simulated
together with the system~1! by the same method~see Sec.
II A !.

III. RESULTS OF NUMERICAL EXPERIMENT

To carry out our experiments, we take the parameters
the system~1! just as in @4,5#: a52.1078, b51.4706, A
51.3039, andV50.7301. These values of parameters a
such that in the absence of noise the oscillators are confi
to a single well of the bistable potential, but small noise c
induce significant hopping between wells@4#.

The differential equations of Sec. II, needed for calcul
ing the SNR and phase shifts, are simulated by the w
method from Sec. II A with the time steph50.1, with the
exception of the curves of Fig. 3 where we useh50.2 for the
noise level«50 – 0.5 ~note that the main SR effect on th
phase shifts is namely in this range of«!. To calculate the
expectations, we simulateNr independent realizations o
X(t). We takeNr equal to 4000 in all our experiments, ex
cept for the curve of Fig. 3 underc50 and«50.02– 0.15 for

ss

FIG. 3. Phase shiftsc1 ~degrees! of the middle oscillators from
the corresponding arrays described by Eq.~1!. The parameters are
the same as in Fig. 1~with the exception ofT58p/V!. The Monte
Carlo error is less than 1.7.

FIG. 4. Phase shiftsc1 ~degrees! versus noise level« and cou-
pling c of the middle oscillator from the array of three oscillator
The parameters are the same as in Fig. 3. The Monte Carlo err
less than 1.9.
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4794 57M. V. TRETYAKOV
which Nr510 000. All the errors arising in our experimen
are smaller than or comparable to the Monte Carlo error~we
control the errors by the repeated calculations of some po
of the SNR and phase shifts under a smaller steph, greater
Nr , and greaterT!. To simulate the needed random va
ables, we use a random generator of@22#.

Figures 1 and 2 present the SNR behavior. The SNR
nonmonotonic~extremal! function both of noise and of cou
pling. If the extremal behavior with increasing noise is
common feature of all systems connected with the SR p
nomenon, the SNR extremal behavior with the growth
coupling is attributable to the AESR phenomenon. These
sults coincide with ones of@4,5#. We also come to the sam
conclusion as authors of previous papers that an increas
the array lengthn improves the SNR. According to Fig. 1
there is a lengthn* of the array such that a further increa
of the array lengthn does not lead to an improving SN
under each fixed couplingc.
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Figures 3 and 4 show the extremal behavior of the ph
shifts. Maxima of phase shifts appear at a lower noise le
in comparison to the noise level corresponding to the S
maxima. This fact corresponds to the results of@20# on a
single oscillator. The phase shift is also a nonmonoto
function of coupling in the case of noisy coupled oscillato
~see Fig. 4!. An increase of the array lengthn improves the
effect just as it affects the SNR~see Fig. 3!.
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