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Numerical technique for studying stochastic resonance

M. V. Tretyakov*
Ural State University, Lenin Street 51, 620083 Ekaterinburg, Russia
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A numerical technique is proposed to study the stochastic resor(@m®ephenomenon. The proposed
technique allows one to find characteristics of SR faster than by the usual approach. The signal-to-noise ratio
and phase shifts for a system of noisy coupled oscillators are simu8#®063-651X98)00704-1

PACS numbds): 02.70—~c, 02.50-r, 05.40+j

[. INTRODUCTION lead to an improved SNR. The experiments on phase shifts
display their extremal behavior with the growth of noise in-

The term “stochastic resonancé3R) is historically used tensity and coupling.
in connection with a variety of effects attributable to the
interaction between a periodic applied force and noise in Il. DESCRIPTION OF THE NUMERICAL TECHNIQUE
nonlinear systems. As a survey on SR, one can use the pro-
ceedings of workshopdl,2] or the review3].

In recent paperg4—7] the authors have investigated SR in
large arraySup to 512 elemenjsof noisy coupled oscilla- : - 3 . ; :
torg. The gher?omenon was namec[4ﬂ1ar¥ay er?hanced sto- dXV=[axV=bX""+A sin(Qt+ ) +c(X T - 2X"
chastic resonancéAESR). In addition to the common fea- + XY ]dt+ edWi(1),
tures of SR, AESR demonstrates a spatiotemporal
synchronization and there is an additional design parametef—1 2 . p x©=Xx® x+*D=XM X(0)=X,,te[0T],

Following [4,5], we consider the system of stochastic dif-
ferential equations

the coupling strength, which essentially affects the behavior (1

of SR characteristics. It was experimentally showfisihthat

the signal-to-noise ratio of the output signal of a single diodevhere X=(X™), X, . .. X() is an n-dimensional vector
resonator can be significantly improved by coupling it diffu- and W;(t),i=1, ... n, are independent standard Wiener

sively into an array of resonators. AESR was studied analytiprocesses. The systeft) describes a one-dimensional array
cally in some limit casegsee, e.g.[8,5]), but the basic tool (chain of overdamped driven nonlinear oscillators coupled
for its investigation is numerical simulation of a system oflinearly to their nearest neighbors. To ensure a bistable po-
stochastic differential equatiofSDES. tential (two-state points the coefficientsa andb must be
To calculate the characteristics describing SR, one mugiositive. The phasep is taken as a uniformly distributed
integrate the system on long time intervals and simulate #aandom variable on the intervf,2] and the coupling pa-
sufficiently large number of independent realizations. Mainrameterc=0.
characteristics of SRe.g., the signal-to-noise rajiare ex- Let us recall some definitions from the theory of random
pectations of functionals of the SDE solution. It is known processegsee, e.g/[,13,14]), which we use below. A random
[9-11] that weak numerical methods are sufficient to calcuprocesst(t), £(t) e R", is a stationary one if it has two first
late such quantities and are quite simple for realization anghomentsE£(t) and E|§(t)|2 and
efficient. Special powerful weak methods for SDEs with
relatively small noise are proposed [ihZ]. Applying these E&(t)=E&(t+ 7)=const,
methods, we propose a numerical technique here that allows
us to study properties of SR faster than by the usual ap- cov(&(t),&(s))=cov(é(t+7),&(s+ 1)) for any t,s,7,
proach. We demonstrate the technique on a simple model, 2
but it is also valid for more complicated systems. ) o )
In Sec. Il the numerical technique for calculating the Where cové(t),£(s)) is the covariation matrix
signal-to-noise ratio and phase shifts is proposed. Section Il _ T T
contains numerical results for the array of noisy coupled os- cow(&(1),£(s)) =E&(1)&(s) '~ BE(DEL(S)
cillators. We confirm by the numerical experiment that the : P ; - -
signal-to-noise ratidSNR) has extremal behavior with an A random procesg(t) is a periodic one with a period if
increase of both noise intensity and coupling and that the E&(t)=E&(t+Ty),
effect is improved with the growth of the array length. These
results are in full agreement with the previous papers on -
AESR[4,5]. We also show that there is a critical length of COME() &(s))= cou&(t+To), &(s+To)) - for any t’skg)
array such that a further increase of the array length does not
In accordance with Theorem 5.2[ih3], Chap. 3, there is
a solutionX(t) of the systen(1) at each fixedp, which is a
*Electronic address: Michael.Tretyakov@usu.ru periodic Markov process with the periodr2(). The peri-
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odic process can be converted into a stationary one by thRunge-Kutta weak method with the en@fh*-+ £*h?) from
following shift of time [15,13: If # is a random variable, [12]. In the case of the syste(t) this method takes the form
distributed uniformly or{0,27/Q)] and independent oX(t), i 0 126 @ 0 @ 1 oy

then the process(t)=X(t+ 6) is stationary. Consequently, Xi+1= Xy’ +eh™ "+ (ki +2ky’ +2k3 "+ Kk, ")/6

there is a stationary solutiok(t) of the system(1) in the 32 (i) M) 12 (N3 (i)

case of uniformly distributed of®,2], independent oix(t) +eh™anc = hbL (X +eh™n )" = (X

ra}ndqm phase (see the phy_sical background of such a dis- _Shllzn&i))B]/zJ’_Shslzc(ﬂ&Hl)_ZnE(i)_i_ 77;3—1))’
tribution of the phase, e.g., in[16,3]). Due to Theorem 7.1

in [13], Chap. 4, there is a unique stationary Markov process i=1,...n, k=01,...N, )
X(t) corresponding to the syste(t), and under any initial

distribution of X, the solutions of Eq(1) converge to this  whereX,=(X{" X(®, ... X{") is the approximation of the
stationary process in the weak sense-aso. solution X(t,) to system(1) and

Let us consider a constituent oscillator of the ch@ry.,
the middle ongdescribed by Ec(1). Below we shall denote  k{)=h[ax{’— bX(ki)3+Avk+ c(X{ Y —2x (4 XDy,
a constituent componefibscillatoy X1 {1,2, ... n}, of

the vectorX(t)=(X1), ... X(M) by X.(t) and its correla- k) =h{a(X("+k{72) = b(X{ +k{72)3+ A(v+14/2)
tion function byK(7). In our case the correlation function ) _ ) )
K(7) has the form(cf. [15]) +e[(XE TV K T2) - 2(X +k(12)

- +(X{ VK TV2)1),

K(1)=Ko(7)+22, az-ycod2k—1)Qr,  (4) . . o _ ,
k=1 k{)=h{a(X{+eh2) + k72) — (XD + eh 12l

whereK,(7) goes quickly to zero. +k(i)/2)3+A(vk+|2/2)+C[(X(ki+1)+8h1/2§f(i+1)
According to the definition, the spectral functi¢i( w) 2 _ _ _ _
can be written as +KSTV2) = 2(XY + eh Y20+ kG 12) + (X~

sin +eh¥2el =D 4 k=D
wTdT, (J)E[O,OO). (5) € gk 2 )]}

1 ©
Flw)= p fo K(7)

k(" =h{a(X{'+eh2 +k§) —b(X{'+ ehV%) + k)3
Because of Eq(4), we get . . 4
44, we g +A( ) +e[(XE TP+ ehVZ T+ k(D)
F(o)=Fo(w)+ >, an_ix[o—(2k—1)Q], —2(X+ eh 20+ k) + (X D+ e Y
k=1 )
+k§ )1,
where
kKO=kD k" D=km  j=1 4
. 0 X<O J ] L J J 1 L | 1
1 (=~ sinwTt ’
Fo(w)=— fo Ko(7)———d7, x(x)= i/Z'X;EO X=X, XM PV=x"  X,=X(0). ®)

To simulate sinQt+¢) of Eq. (1), we introduce the system
Consequently, the spectral dens8fw) is equal to

. du=—Qudt,
S(©)=Sy(0)+ 2, ag18(@=(2k-1)Q)  (®) dv=Qudt,
and u(0)=ug=cose, v(0)=vyg=sin .
dFg(w) 1 (= This system is approximated by
So(w)= =— f Ko(T)cOswTdT.
do ™ Jo Ut 1= U+ (M +2my+ 2mg+my,)/6,
Thus, as it is generally known, the spectritw) for a Ve 1=K+ (114 21,+ 21 3+1,)/6,

system like Eq(1) consists of a broadband noise background
and &function spikes at frequenciem=(2k—1)Q, k  where
=12,....
m1=—thk, |1:hQUk, m2:_hQ(Uk+|1/2),
A. Numerical method = hQ(u+m,/2),
Let us introduce an equidistant discretizatiag of the
time interval[0,T]: Ay={t;:i=0,1,... N; O0=t<t;<--- m;=—hQ(v+15/2), 13=hQ(u+m,/2),
<ty=T}; the time stefh=t;, ;—t;. To simulate the system
(1), which is a system with additive noises, we take the fully my=—hQ (v, +13), 1,=hQ(u+m;).
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We usevy andl;, j=1,2,3, in Eq.(8). _ _ termAQ[Sy(Q—AQ)+Sy(Q+AQ)] is related to the noise
The mutually independent random variabg8 and {?  background in the signal bin. As it is usually doiBg(w) is

from Egs.(7) and (8) are simulated in accordance with the assumed to be a sufficiently slowly variating function. Our

laws experiments proved this fact. This approximation of the SNR
coincides in general with ones used in other papers on SR.
P(é=0)=2/3, P(é=—V3)=P(£=v3)=1/6, To calculate the SNR, the stationary conditi¢Bsfor the
solution to the systerfil) must be fulfilled[as mentioned at
P(n=—112)=P(5=1/J12)=1/2. the beginning of this section, the systdf) has a unique

stationary solutioh Naturally, it is possible to ensure this
The method(7) has the second order of weak convergenceequirement rigorously only for an infinite time. However,
with respect to the time step. However, it usually gives the solution may already have good for our aifhs., an
more accurate resul{@specially under low noise leyeind  error arising for this reason is not greater than the other er-
it is not essentially more complicated from the computationakors in the experimenistationary properties at a certain time
point of view than a standard weak method of ordels@e  momentT; after the beginning of the SDE simulation. We
details in[12]). To carry out our experiments, we do not take find an appropriate value df, in our experiments by simu-
a more accurate method, e.g., a standard method of order|gtion of the expectatioE X(s) and the correlation function
[9] or methods with errorsO(h*+&®h?), O(h*+z2h%),  EX,(s)X.(s+ ) under various.
O(h*+&%h?), etc. of[12], because the methdd) ensures Taking into account thaEX(s) is equal to zero in our
enough accuracy and speed of calculations for studying SBase, let us write formulas omittingX(s). Due to the fact
characteristics in our case. Therefore, we have no reasons fat the system is simulated on a finite time interf/@JT
take a more accurate and, naturally, more complicated-T], we approximat€(Q,AQ) andSy(w) by Q+(Q,AQ)

method(e.g., there are no fully Runge-Kutta schemes amongngd So, (@) correspondingly. Consequently, we calculate the
the more accurate methods mentioned value

B. Evaluation of the signal-to-noise ratio Q1(Q,AQ)—AQ[Sy (Q—AQ)+Sy (Q+AQ)]
~ ’ T T
One of the main characteristics describing the SR phe- Rr= [So.(Q—AQ)+S, (Q+AN)]/2 ,
nomenon is the SNR. The SNR is a commonly used measure T T (11)
of the information content of the response of a system. The

remarkable property of the SR phenomenon is the nonmono- . — .
tonic behavior of SNR as a function of noise level. The func-Which approximate® and thereforeR. Note that we simu-

tion has a maximum and there is a noise level for which thdate the systentl) on the time interva[0,T] to ensure the
system acts as a selective amplifier in some range of frequegtationary properties2) and on the time interval T, T

cies. +T] to evaluateR;.

Here we use the following definition of the output SRR The functionQ(,AQ) from Eq. (11) is equal to[see
for the constituent oscillator: Eqg. (10)]

R= %1 2 (T sinAQr
Sy(Q)’ QT(Q,AQ)=; JO K(T)COSQTTdT

wherea, and Sy(w) are from Eq.(6), i.e., R is the ratio of TetT
the signal power and the noise background at the frequency =—E Xc(Ts)f Xc(t)cosQ(t—Ty)
of the applied periodic force. The distinctions in SNR defi- Ts
nition existing in the literature do not lead to qualitatively sin AQ(t—Ty)
different results. T, }

Let us introduce a sufficiently small interval of frequen- s

cies[Q—-AQ,Q0+AQ] (“signal bin”) and approximatdR )
We calculate it as

by R

_ _ 2

o QUL AL~ ARLSOD - AL+ S(@+AL)] Qr(Q.A0) = ZEX(TYZ(T+T),
[So(Q—AQ)+S(Q+AQ)]/2 ™
)
whereZ(t) obeys the subsidiary equation
where[see Eq.(5)]
SinAQ(t—Ty)
Q(Q,AQ)=F(Q+AQ)-F(Q—-AQ) dZ=X.(t)cosQ(t—Ty) ?dt, Z(Tg)=0.
S
2 (= sinAQ 7
- fo K(r)cosQ7———d7. (10 \ye simulate this equation together with the systdrusing

the same methotkee Sec. Il A

The termQ(,AQ) corresponds to the signal power and the ~Let us conside, () now. The spectral functiok (w)
noise background in the signal bin of widtlA® and the can be rewritten as
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1 (= sin or a sufficient smallness of these errors. To prove the smallness
Flw)= p J'O T dr of these errors in comparison to other errors arising in our
experiments, we check the variation & with growing T.
1T 1 1) We considefT ¢+ T as a sufficiently long time if the variation
=lim — | K(7)|——=|sinwrd7r ~ . ) )
T—w T Jo T T of Ry with growing T is not greater than the other errors,

. e.g., the Monte Carlo error. The finiteness of the time inter-
because () [(K(7)sinwrdr goes to zero aJ goes to  val also produces a loss of spectrum resolufib®], accord-

infinity. Then, using the relatiofcf. [14], Sec. 2.1 ing to which we can calculat8;(w) only at w=2xk/T, k
T ; =0,1,2 ... . Because of time discretization, the highest fre-
f K(r)( 1— —|coswr dr quency(the Nyquist frequenagythat is possible to pick out is
0 T equal towy=7/h [18], whereh is a step of time discretiza-
2 tion. The time stefn in our experiments is such that frequen-

cieswe[Q—-AQ,Q+AQ] are much smaller thaty. To
check that the taken time stépensures the numerical inte-
gration error to be not greater than the other errors in our
experiments, we carry out the repeated calculations of some

points of R with the time steph/2.

Remark 1As mentioned above, we simulate values such
as Ef(X(T))g(X(Ty) [e.g., EX(s)X.(s+7) or
Consequently, Q:(Q,AQ)] by the weak method. However, the existing
theorems(cf. [9—12)) on weak convergence of a numerical
method were proved for calculating an expectation such as
Ef(X(T)). The proposition proved ifil7] allows us to also
simulateE f(X(T;))g(X(T,)) by weak methods.

1 st T iw(t—Tg)
_EE fTs Xc(t)e Jdt| ,

we get

1 fe
Flw)=Ilim -— E
0

2 —~
27T do.

T+ T o~
f X (t)e' @t Todt
TS

T—oo

= 1 TstT iw(t—Tg) 2
Swzlim—Ef X(t)e 't iddt| .
( ) THOCZWT TS C()

It is easy to provéct. [17]) that the functiorS(w) is exactly Remark 2.0ne can see that our procedure of calculating
equal toSy(w) at the pointsw#(2k—1)Q, k=1,2,.... the SNR differs from the generally used one. The usual pro-
Then we can take the functid®(w), cedure contains the following stefsee, €.9.[19,4,9): (a)

simulation of SDE solutionX(t) by a mean-square method
(as a rule, the mean-square Euler mejhdt) the random
trajectoriesX(t) obtained are considered as experimental sta-
_ tistical data, to which the fast Fourier transform is applied to
instead ofSy_(w) for evaluatingRy [see Eq(11)] if AQis calculate a random spectrum, and then, by averaging a num-
sufficiently small and such th&8;(w) has no sharp varia- ber of segments and samples of the random spec®yfm)
tions outside the intervald (2k—1)Q—AQ,(2k—1)Q) s found;(c) the SNR is calculated on the basisSf{w) [ @,
+AQ], k=1.2,.... is found as a square und8¢(w) in a signal bin.
We calculateS;(w) as According to our procedure, we use a weak method,
which gives us an opportunity to calculate the needed values
Si(w)= LE[YE’(TS+T)2+Y‘2"(TS+T)Z], (12) with a Igrge integration stefe.g., 0.1 in our exp.erimer).tin
2w T comparison to the steg8.005, 0.002, etgtaken in previous
works[19,4,5; we simulate both the investigated system and

the values needed for the approximatign of the SNR by

1 TstT iw(t—Tg) ?
ST(w)_ﬁE fTs Xc(t)e sSdt| ,

whereY?(t) andY3(t) obey the equations

dY?=X,(t) cosw(t—Ty) dt, the same numerical method. Because of its features, the pro-
posed technique essentially saves CPU time, providing a suf-
dYy=X(t) sin o(t—T,) dt, ficiently high accuracy.
YI(T9)=Y3(Ts)=0. (13

C. Simulation of phase shifts
We simulate Eq(13) together with the systerfil) by the
same method.

In addition to the common errorshe error of numerical
integration and the Monte Carlo erjarising in simulating : )
SDEs by a weak method, we also have some error due to ttf_lgat_ the Fiﬂa_‘se Sh'f.t also has a nonmonotdekirema) be-
finiteness of the time interv@D, T+ T] on which the system avior with increasing noise. - . . .
is simulated. Indeed, the estimata@s(Q,AQ) and Sy(w) As mentioned at the _begmnln_g qf this secpon, the sollutlon
are biased ones fa®(Q,AQ) and Sy(w) (see, e.g.[18]) X(t) to the syste_m(l)_@_a periodic one with the_ pe_rlod
since the errorpq_(2,A0)=Q(0,A0Q) ~Q(Q,AQ) and 27r/Q under any fixed initial phase= ¢, . By the definition

N o
pST(a))ISO(w)—ST(w) are usually not equal to zero. How- of the periodic procesfsee Eq.3)], we have

ever, taking the value of to be large enough, we can ensure E[X(1)|¢=@o]=E[X(t+ 27/ Q)| o= ¢q].

Another important characteristic of SR is a phase lag
(phase shift between the applied periodic force and the re-
sponse. It was found for one-dimensional systd23,21]
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_FIG. 1. Signal-to-noise rati®? versus noise levek for the FIG. 3. Phase shiftg, (degreesof the middle oscillators from
middle oscillators of the arraysl) under the parameters  ihe corresponding arrays described by BY. The parameters are
=2.1078,b=1.4706,A=1.3039,=0.7301, Ts=6/Q, andT  {he same as in Fig. Aith the exception off =8/Q). The Monte

=40m/Q). The Monte Carlo error is less than 0.26. Carlo error is less than 1.7.

Then we can expand the conditional expectaidiX(t)|¢  to 27k/Q, k=1,2,... . Equations(15) are also simulated

= o] in the Fourier series together with the systertl) by the same methotsee Sec.
I1A).

oo

E[X(t)|(p ¢ol kzo Bic Sk Qt+ o= o). lll. RESULTS OF NUMERICAL EXPERIMENT

To carry out our experiments, we take the parameters of
the system(1) just as in[4,5]: a=2.1078,b=1.4706, A
=1.3039, and)=0.7301. These values of parameters are
such that in the absence of noise the oscillators are confined
to a single well of the bistable potential, but small noise can
induce significant hopping between welli4.

The differential equations of Sec. Il, needed for calculat-
ing the SNR and phase shifts, are simulated by the weak
method from Sec. Il A with the time stelp=0.1, with the
exception of the curves of Fig. 3 where we tse0.2 for the
noise levele=0-0.5(note that the main SR effect on the
phase shifts is namely in this range ©f To calculate the
expectations, we simulatdl, independent realizations of

eX(t). We takeN, equal to 4000 in all our experiments, ex-
¢ept for the curve of Fig. 3 under=0 ande =0.02-0.15 for

Analogously t0[20,21], we are interested in the value of
the phase shifty, . It can be found for the constituent oscil-
lator as

Y= —arctafEZ(T+T)/EZy(Ts+T)], (149
whereZ,(t) andZ,(t) obey the equations
dZ;=X.(t)cog Qt+ ¢g)dt,

dZ,=X(1)siN(Qt+ gp)dt,  Zy(Ts)=2Z,(Ts)=0.
(15

HereT, is a time moment, after which we suppose, as abov
that X(t) has already good stationary properti&sis equal

FIG. 2. Signal-to-noise ratiB versus noise level and coupling FIG. 4. Phase shiftg, (degreesversus noise levet and cou-
c for the middle oscillator of the array of three oscillatdt$. The pling c of the middle oscillator from the array of three oscillators.
parameters are the same as in Fig. 1. The Monte Carlo error is le§$e parameters are the same as in Fig. 3. The Monte Carlo error is
than 0.17. less than 1.9.
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which N, =10 000. All the errors arising in our experiments  Figures 3 and 4 show the extremal behavior of the phase
are smaller than or comparable to the Monte Carlo gm@  shifts. Maxima of phase shifts appear at a lower noise level
control the errors by the repeated calculations of some point comparison to the noise level corresponding to the SNR
of the SNR and phase shifts under a smaller $tegreater maxima. This fact corresponds to the results[28] on a
N,, and greatefT). To simulate the needed random vari- single oscillator. The phase shift is also a honmonotonic
ables, we use a random generatof 2. function of coupling in the case of noisy coupled oscillators
Figures 1 and 2 present the SNR behavior. The SNR is gsee Fig. 4 An increase of the array lengthimproves the
nonmonotonidextrema) function both of noise and of cou- effect just as it affects the SNRee Fig. 3
pling. If the extremal behavior with increasing noise is a
common feature of all systems connected with the SR phe-
nomenon, the SNR extremal behavior with the growth of
coupling is attributable to the AESR phenomenon. These re-
sults coincide with ones d#,5]. We also come to the same . )
conclusion as authors of previous papers that an increase of 1he author acknowledges valuable constant discussions
the array lengtm improves the SNR. According to Fig. 1, with Professor G. N. M_llsteln, is grateful to_the Alexande_r
there is a lengtm, of the array such that a further increase VOn Humboldt Foundation for support of this work, and is
of the array lengti does not lead to an improving SNR grateful to the Weierstra3-Institut flAngewandte Analysis
under each fixed Coup“ng_ und StOChaStiKBerlin) for the hOSpItallty
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